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Abstract. ROSE is a preprocessor generation tool for the support of 
compile time performance optimizations in Overture The Overture 
framework is an object-oriented environment for solving partial differ- 
ential equations in two and three space dimensions. It is a collection of 
C++ libraries that enables the use of finite difference and finite volume 
methods at a level that hides the details of the associated data struc- 
tures. Overture can be used to solve problems in complicated, moving 
geometries using the method of overlapping grids. It has support for grid 
generation, difference operators, boundary conditions, database access 
and graphics. In this paper we briefly present Overture , and discuss 
our approach toward performance within Overture and the A++P++ 
array class abstractions upon which Overture depends, this work repre- 
sents some of the newest work.in Overture The results we present show 
that the abstractions represented within Overture and the A++P++ 
array class library can be used to obtain application codes with perfor- 
mance equivalent to that of optimized C and Fortran 77. ROSE, the 
preprocessor generation tool, is general in its application to any object- 
oriented framework or application and is not specific to Overture 

1 Introduction 

The Overture framework is a collection of C++ libraries that provide tools for 
solving partial differential equations. Overture can be used to solve problems 
in complicated, moving geometries using the method of overlapping grids (also 
known as overset or Chimera grids). Overture includes support for geometry, 
grid generation, difference operators, boundary conditions, database access and 
graphics. 

An overlapping grid consists of a set of logically rectangular grids that cover 
a domain and overlap where they meet. This method has been used successfully 
over the last decade and a half, primarily to solve problems involving fluid flow 
in complex, often dynamically moving, geometries. Solution values at the overlap 
are determined by interpolation. The overlapping grid approach is particularly 
efficient for rapidly generating high-quality grids for moving geometries. As the 
component grids move only the boundary points to be interpolated change, the 
grid points do not have to be regenerated. The component grids are structured so 





- Grid functions [lo]: storage of solution values, such as density, velocity, 
pressure, defined at each point on the grid(s). Grid functions are derived 
from A++/P++ array objects. 

- Operators [2,9]: provide discrete representations of differential operators 
and boundary conditions 

- Grid generation [12]: the Ogen overlapping grid generator automatically 
constructs an overlapping grid given the component grids. 

- Plotting [13]: a high-level interface based on OpenGL allows for plotting 
Overture objects. 

- Adaptive mesh refinement: The AMR++ library is an object-oriented 
library providing patch based adaptive mesh refinement capabilities within 
Overture . 

Solvers for partial differential equations, such as the OverBlown solver a,re 
available from the Overture Web Site. 

2.1 Array Operations 

A++ and P++ [17,29] are array class libraries for performing array operations 
in C++ in serial and parallel environments, respectively. 

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not 
requiring any modification to the C++ compiler or language. A++ provides a,n 
object-oriented array abstraction specifically well suited to large-scale numerical 
computation. It provides efficient use of multidimensional array objects which 
serves to both simplify the development of numerical software and provide a 
basis for the development of pa.rallel array abstractions. P++ is the parallel 

array class library and shares a.n identical interface to A++, effectively allowing 
A-t+ serial applications to be recompiled using P++ and thus run in parallel. 
This provides a simple and elegant mechanism that allows serial code to be 
reused in the parallel environment. 

P++ provides a data parallel implementation of the array syntax represented 
by the A++ array class library. To this extent it shares a lot of commonality 
with FORTRAN 90 array syntax and the HPF programming model. However, 
in contrast to HPF, P++ provides a more general mechanism for the distribu- 
tion of arrays and greater control as required for the multiple grid applications 
represented by both the overlapping grid model and the adaptive mesh refine- 
ment (AMR) model. Additionally, current work is addressing the addition of 
task parallelism as required for parallel adaptive mesh refinement. 

Here is a simple example code segment that solves Poisson’s equation in 
either a serial or parallel environment using the A++/P++ classes. Notice how 
the Jacobi iteration for the entire array can be written in one statement. 

// Solve u-xx + u-yy = f by a Jacobi Iteration 
Range R(O,n) // define a range of indices: 0,1,2,...,n 
floatArray u(R,R), f(R,R) // declare two two-dimensional arrays 
f = 1.; u = 0.; h = 1./n; // initialize arrays and parameters 



Range I(l,n-l), J(l,n-1); // define ranges for the interior 

for( int iteration=O; iteration<iOO; iteration++ > 
U(I,J) = .25*(~(I+1,J)+u(I-1,J~+u~I,J+l~+u~I,J-l~-f~I,J~*~h*h~~; // data parallel 

Fig. 1. Hyperbolic surface grid generation is used to generate a smooth surface grid 
over a surface coming from a CAD package. 

2.2 Grid Generation 

Overture has support for the creation of overlapping grids for complicated ge- 
ometries. The process of generating an overlapping grid consists of two basic 
steps. In the first step a number of component grids are generated. Each com- 
ponent grid represents a portion of the geometry. The component grids must 
overlap but otherwise can be created locally. Overture provides a collection of 
Mapping classes that can be used to generate component grids including splines, 
NURBS, bodies of revolution, hyperbolic grid generation, elliptic grid genera- 
tion, trans-finite interpolation and so on. In addition we are working on methods 
for reading files generated by CAD programs and generating grids. Figure (1) 
shows how hyperbolic grid surface grid generation can be used to generate a 
single smooth grid over a CAD surface described by a collection of trimmed 
NURBS. This is accomplished with the aid of the SURGRD hyperbolic surface 
grid generator[5]. 

Given the component grids, the overlapping grid then is constructed using 
the Ogen grid generator. This latter step consists of determining how the differ- 
ent component grids interpolate from each other, and in removing grid points 
from holes in the domain, and removing unnecessary grid points in regions of 



excess overlap. Ogen requires a minimal amount of user input. The grids in figure 
(2) were all created with Ogen and represent some of the new grid generation 
capabilities within Overture . 

Fig. 2. Sample 2D and 3D overlapping grids generated with the Ogen grid generator. 

3 Writing PDE solvers 

This example demonstrates the power of the Overture framework by showing 
a basically complete code that solves the partial differential equation (PDE) 

Ut + au, + bzl, = v(u,, + uyy) 

on an overlapping grid. 



The PlotStuff object is used to interactively plot contours of the solution 
at each time step[l3]. 

int main0 
\C 

CompositeGrid cg; // create a composite grid 
getFromADataBaseFile(cg,"myGrid.hdf"); // read the grid in 
floatCompositeGridFunction u(cg); // create a grid function 
u=l.; // assign initial conditions 
CompositeGridOperators op(cg); // create operators 
u.setOperators(cg); 
PlotStuff ps; // make an object for plotting 
// --- solve a PDE ---- 
float t=O, dt=.005, a=l., b=l., nu=.i; 
for-( int step=O; step<lOO; step++ > 
\( 

u+=dt*( -a*u.x()-b*u.yO+nu*(u.xx()+u.yy()) ); 
t+=dt; 
u.interpolateO; // interpolate overlapping boundaries 
// apply the BC u=O on all boundaries 
u.applyBoundaryCondition(O,dirichlet,allBoundaries,O.); 
u.finishBoundaryConditions(); 
ps.contour(u); // plot contours of the solution 

\I 
return 0; 

\I 

The example solves the time-dependent equation explicitly. Other class li- 
braries within the Overture framework simplify the solution of elliptic and 
parabolic equations, the linear systems generated can be solved using any of 
numerous numerical methods as appropriate including multigrid, and methods 
made available within a number of external dense and sparse linear algebra pack- 
ages including PETSc, and others. These are wrapped into the elliptic solver 
library (Oges) within Overture . 

4 Approach to Performance 

The execution of array statements involves inefficiencies stemming from several 
sources and the problem has been well documented, by many researchers[31,26, 
271. Our approach to performance within Overture is to use a preprocessor 
to introduce optimizing source-to-source transformations. The C++ source-to- 
source preprocessor is built using ROSE; a tool we have designed and imple- 
mented to build application specific preprocessors. 

ROSE is a programmable source-to-source transformation tool built on top 
of SAGE[21] for the optimization of C++ object-oriented frameworks. While we 
have specific goals for this work within Overture , ROSE applies equally well 
to any other object-oriented framework. 



A common problem within object-oriented C++ scientific computing is that 
the high level semantics of abstractions introduced (e.g. parallel array objects) 
are ignored by the C++ compiler. Classes and overloaded operators are seen 
as unoptimizable structures and function calls. Such abstractions can provide 
for particularly simple development of large scale parallel scientific software, but 
the lack of optimization greatly affects the performance and utility. Because 
C++ lacks a mechanism to interact with the compiler, elaborate mechanisms 
are often implemented within such parallel frameworks to introduce complex 
template-based and/or runtime optimizations (such as runtime dependence anal- 
ysis, deferred evaluation, runtime code generation, etc.). These approaches are 
however not satisfactory since they are often marginally effective, require long 
compile times, and/or are not sufficiently robust. 

Preprocessors built, using ROSE have a few features tl1a.t stand out: 

1. A hierarchy of grammars are specified as input to ROSE to build (tailor) the 
preprocessor specific to a given object-oriented application, library, or frame- 
work. ROSETTA, a code generator we have designed and implemented, is 
used to generate an implementation of the grammars that are used inter- 
nally. The hierarchy of grammars (and their implementations) are used to 
construct separate program trees internally, one program tree per grammar, 
each representing the user’s application. The program trees are edited as re- 
quired to replace selected subtrees with other subtrees representing a specific 
transformation. Quite complex criteria may be used to identify where trans- 
formations may be applied, this mechanism is superior to pattern-recognition 
of static subtrees within the program tree because it is more general and 
readily tailored. 

2. Transformations a,re specified which are then built into the user application 
automatically where appropriate. The mechanism is designed to permit the 
automated introduction of particularly complex transformations (such as 
the cache based transformations specified in [28], space does not permit an 
elaboration of this. 

3. To simplify the debugging, preprocessor’s output (C++ code) is formatted 
identical to the input application code (except for transformations that are 
introduced, which have a default formatting). Numerous options are included 
to tailor the formatting of the output code and to simplify working with 
either its view directly within the debugger or its reference to the original 
application source within the debugger. Comments and all C preprocessor 
(cpp) control structures are preserved within the output C++ code. 

4. The design of ROSE is simplified by leveraging both SAGE 2 and the 
EDG[22] C++ front-end. EDG supplies numerous vendors with the C++ 
front-end for their compiler and represents the current best implementation 
of C-t+. In principle this permits the preprocessors built by ROSE to ad- 
dress the complete C++ language (as implemented by the best available 
front-end). Modifications have been made to SAGE 2 to permit portabil- 
ity and allow us to fulfill on a complete representation of the language. By 
design, we leverage many low-level optimizations provided within modern 



compilers while focusing on higher level optimizations largely out of reach 
because traditional approaches can not leverage the semantics of high level 
abstractions. In doing so, we slightly blur the distinction between a library 
or framework, a language, and a compiler. But, because we leverage several 
good quality tools the implementation is greatly simplified. 

The approach is different from other open C++ compiler approaches be- 
cause it provides a mechanism for defining high level grammars specific to an 
object-oriented framework and a relatively simple approach to the specification 
of large and complex transformations. A requirement for representing the pro- 
gram tree within different user defined grammars is to have access to the full pro- 
gram tree, this is not possible (as we best understand) within the OpenC++[20] 
research work. By using SAGE 2 and ROSE the entire program tree, repre- 
sented in each grammar, is made available; this permits more sophisticated pro- 
gram analysis (when combined with the greater semantic knowledge of object- 
oriented abstractions) and more complex transformations. We believe that the 
techniques we have developed greatly complement the approaches represented 
within OpenC++, in particular the Meta object mechanism represented within 
that work. That SAGE is in many ways similar to the MPC++[lS] work, we be- 
lieve we could have alternatively built off of that tool in place of SAGE (though 
this is not clear). However, since SAGE 2 uses the EDG front-end we expect this 
will simplify access to the complete C++ language. MPC++ addresses more of 
the issues associated with easily introducing some transformations than SAGE, 
but not of the complexity that we require for cache ba,sed transformations[28]. 
Each represent only a single grammar (the C++ grammar) and this is far too 
complex (we believe) a starting point for the identification of where sophisti- 
cated transformations can be introduced. The overall compile-time optimization 
goals are related to ideas put forward by Ian Angus[25], but with numerous 
distinguishing points: 

1. We have decoupled the optimization from the back-end compiler to simplify 
the design. 

2. We have developed hierarchies of grammars to permit arbitrarily high level 
abstractions to be represented with the greatest simplicity with the program 
tree. The use of multiple program trees (one for each grammar) serves to 
organize high level transformations. 

3. We provide a simple mechanism to implement transformations. 
4. We leverage the semantics of the abstractions to drive optimizations. 
5. We have implemented and demonstrated the preprocessor approach on sev- 

eral large numerical applications. 

Finally, because ROSE is based ultimately (through SAGE) upon the EDG 
C++ front-end, the full language is made available; consistent with the best 
of the commercial vendor C++ compilers which most often use the same EDG 
C++ front-end internally. However, some aspects of the complete support of 
C++ within SAGE are incomplete. 



A++ Performance with and without ROSE 

Fig. 3. The use of a preprocessor (built using ROSE) can overcome the performance 
degradation associated with binary evaluation of array operands. These results show 
the use of ROSE with A++ and how the performance matches that of optimized C 
code using the restrict keyword (ratio = 1). It has been shown previously that this is 
equal to Fortran 77 performance. More sophisticated cache-based transformations are 
also possible. 

5 Results 

Within our results we consider the following trivial five-point, stencil: 

A(I,J) = c * ( B(I-1,J) + B(I+i,J) + B(I,J) + B(I,J+l) + B(I,J+l) >; 

In this code fragment, A and B are multidimensional array objects (distributed 
across multiple processors if P++ is used). In this example, I and J are Range 
objects that together specify an index space of the arrays A and B. 

Figure 3 shows the range of performance associated with different size arrays 
for the simple five point stencil operator on the Sun Ultra and Dee Alpha ma- 
chines. The Sun Ultra was selected because it is a commonly available computer, 
the Dee Alpha was selected because its cache design is particularly aggressive 
and as a result it exemplifies the hardest machine to get good cache performance. 
The results are in no way specific to this statement, moderate size applications 
have been processed using preprocessors built with ROSE. The results compare 
the ratios of A++ performance with and without the use of the ROSE prepro- 
cessor to that of optimized C code. The optimized C code takes full advantage 
of the bases of the arrays being identical and the unit strides, the A++ imple- 
mentation does not, these very general subscript computations within the array 
class implementation are compared to very specific and highly optimized sub- 
script computations within the C code. This exaggerates the poorer performance 
of the A++ statements, we do this to make clear that the performance of the 



code output from the ROSE preprocessor is in fact highly optimized and is made 
specific to the common bases of the operands (determined at compile time) and 
the unit stride (determined at runtime). Our results show the relative difference 
that it makes to compare such results. The resulting performance using ROSE 
is nearly ident,ical to that of the optimized C code (ratio = l), this is not sur- 
prising since t,he preprocessor transformation replaces the array statement with 
the equivalent C code (highly optimized, and using restrict pointers where they 
are supported). 

A++ supports expression templates but this data is not presented here, in 
general the expression template will approach the C performance within 90% for 
short expressions and sufficiently large arrays. The combination of expression 
templates with deferred evaluation reduces this to approx. 70% as reported in 
[27] likely because of the required extra level of indirection to the data required 
by the deferred evaluation mechanism (it is not clear if this will be fixed)‘. 

An important distinguishing point bet,ween the two approaches is that within 
larger applications the compile times are several orders of magnitude less for the 
preprocessor approach since expression templates are not used[31]. In practice 
the time taken to pre-process an application is even much less than the compile 
time where no templates are used (expression templa.tes or otherwise) (a few 
seconds, and is not noticeable). This is not surprising since the preprocessing 
consists of only a few of the steps taken internally within a compiler, and excludes 
the most time consuming back-end optimization (to build the object code). 

6 Conclusions 

Overture is capable of addressing the complexity of numerous difficult sorts 
of simulations within scientific computing. We have demonstrated that power- 
ful abstractions can be developed that can greatly simplify the development of 
previously complex (intractable) simulations. New features within the grid gen- 
erator in Overture have made much more complicated grids possible. While 
the abstractions presenting within Overture are the principle motivation for 
its use, the performance of Overture is critical and is dominated by the per- 
formance of the A++P++ array class. Many years of work have gone into the 
development of optimization techniques for the array class library. The prepro- 
cessor approach is by far the most successful so far, however more work remains 
to make preprocessors easier to build and more robust. 

The results we have presented demonstrate the optimization of array class 
statements. All sizes of arrays benefit, their processing with ROSE makes each 
equivalent to the performance of optimized C code (using restrict). Previously 
in [30] we showed that this is equivalent to FORTRAN 77 performance. 

Expression Templates is an alternative mechanism that can be used to op- 
timize array statements, but the mechanism is problematic[31]. More research 

1 This was the experience with expression templates when it was combined with the 
deferred evaluation mechanism in A++P++. 



is required (and being done by others) to address problems within the expres- 
sion template mechanism. More work is similarly required to provide improved 
compile-time optimization solutions. 

7 Software Availability 

The Overture framework and documentation is available for public distribution 
from the web site, http: //www. llnl . gov/casc/Overture. The OverBlown 
flow solver is also available. 
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